2,646 research outputs found

    Gain control of saccadic eye movements is probabilistic

    Get PDF
    Saccades are rapid eye movements that orient the visual axis toward objects of interest to allow their processing by the central, highacuity retina. Our ability to collect visual information efficiently relies on saccadic accuracy, which is limited by a combination of uncertainty in the location of the target and motor noise. It has been observed that saccades have a systematic tendency to fall short of their intended targets, and it has been suggested that this bias originates from a cost function that overly penalizes hypermetric errors. Here we tested this hypothesis by systematically manipulating the positional uncertainty of saccadic targets. We found that increasing uncertainty produced not only a larger spread of the saccadic endpoints but also more hypometric errors and a systematic bias toward the average of target locations in a given block, revealing that prior knowledge was integrated into saccadic planning. Moreover, by examining how variability and bias co-varied across conditions, we estimated the asymmetry of the cost function and found that it was related to individual differences in the additional time needed to program secondary saccades for correcting hypermetric errors, relative to hypometric ones. Taken together, these findings reveal that the saccadic system uses a probabilistic-Bayesian control strategy to compensate for uncertainty in a statistically principled way and to minimize the expected cost of saccadic errors

    Unbinned test of time-dependent signals in real-time neutrino oscillation experiments

    Get PDF
    Real-time neutrino oscillation experiments such as Super-Kamiokande (SK), the Sudbury Neutrino Observatory (SNO), the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND), and Borexino, can detect time variations of the neutrino signal, provided that the statistics is sufficiently high. We quantify this statement by means of a simple unbinned test, whose sensitivity depends on the variance of the signal in the time domain, as well as on the total number of signal and background events. The test allows a unified discussion of the statistical uncertainties affecting current or future measurements of eccentricity-induced variations and of day-night asymmetries (in SK, SNO, and Borexino), as well as of reactor power variations (in KamLAND).Comment: 17 pages, including 3 figure

    Study of a localized photon source in spaces of measures

    Get PDF
    In this paper we study a three-dimensional photon transport problem in an interstellar cloud, with a localized photon source inside. The problem is solved indirectly, by defining the adjoint of an operator acting on an appropriate space of continuous functions. By means of sun-adjoint semigroups theory of operators in a Banach space of regular Borel measures, we prove existence and uniqueness of the solution of the problem. A possible approach to identify the localization of the photon source is finally proposed

    Massive Quantum Memories by Periodically Inverted Dynamic Evolutions

    Full text link
    We introduce a general scheme to realize perfect quantum state reconstruction and storage in systems of interacting qubits. This novel approach is based on the idea of controlling the residual interactions by suitable external controls that, acting on the inter-qubit couplings, yield time-periodic inversions in the dynamical evolution, thus cancelling exactly the effects of quantum state diffusion. We illustrate the method for spin systems on closed rings with XY residual interactions, showing that it enables the massive storage of arbitrarily large numbers of local states, and we demonstrate its robustness against several realistic sources of noise and imperfections.Comment: 10 pages, 3 figures. Contribution to the Proceedings of the Workshop on "Quantum entanglement in physical and information sciences", held in Pisa, December 14-18, 200

    Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    Get PDF
    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a "standard" scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei (Ge-76, Se-82, Te-130, and Xe-136), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.Comment: Minor corrections in the text, references added. Matches published version in Phys. Rev. D 80, 015024 (2009

    Time constancy in human perception

    Get PDF
    Estimated time contracts or dilates depending on many visual-stimulation attributes (size, speed, etc.). Here we show that when such attributes are jointly modulated so as to respect the rules of perspective, their effect on the perceived duration of moving objects depends on the presence of contextual information about viewing distance.We show that perceived duration contracts and dilates with changes in the retinal input associated with increasing distance from the observer only when the moving objects are presented in the absence of information about the viewing distance. When this information (in the form of linear perspective cues) is present, the time-contraction/dilation effect is eliminated and time constancy is preserved. This is the first demonstration of a perceptual time constancy, analogous to size constancy but in the time domain. It points to a normalization of time computation operated by the visual brain when stimulated within a quasi- ecological environment

    Different spatial representations guide eye and hand movements

    Get PDF
    Our visual system allows us to localize objects in the world and plan motor actions toward them. We have recently shown that the localization of moving objects differs between perception and saccadic eye movements (Lisi & Cavanagh, 2015), suggesting different localization mechanisms for perception and action. This finding, however, could reflect a unique feature of the saccade system rather than a general dissociation between perception and action. To disentangle these hypotheses, we compared object localization between saccades and hand movements. We flashed brief targets on top of double-drift stimuli (moving Gabors with the internal pattern drifting orthogonally to their displacement, inducing large distortions in perceived location and direction) and asked participants to point or make saccades to them. We found a surprising difference between the two types of movements: Although saccades targeted the physical location of the flashes, pointing movements were strongly biased toward the perceived location (about 63% of the perceptual illusion). The same bias was found when pointing movements were made in open-loop conditions (without vision of the hand). These results indicate that dissociations are present between different types of actions (not only between action and perception) and that visual processing for saccadic eye movements differs from that for other actions. Because the position bias in the double-drift stimulus depends on a persisting influence of past sensory signals, we suggest that spatial maps for saccades might reflect only recent, short-lived signals, and the spatial representations supporting conscious perception and hand movements integrate visual input over longer temporal intervals

    Neutrino mass and mixing parameters: A short review

    Full text link
    We present a brief review of the current status of neutrino mass and mixing parameters, based on a comprehensive phenomenological analysis of neutrino oscillation and non-oscillation searches, within the standard three-neutrino mixing framework.Comment: 11 pages, including 7 figures. Presented at the 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 200

    Mantle geoneutrinos in KamLAND and Borexino

    Full text link
    The KamLAND and Borexino experiments have observed, each at ~4 sigma level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earth's crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. To this purpose, we analyze in detail the experimental Th and U geoneutrino event rates in KamLAND and Borexino, including neutrino oscillation effects. We estimate the crustal flux at the two detector sites, using state-of-the-art information about the Th and U distribution on global and local scales. We find that crust-subtracted signals show hints of a residual mantle component, emerging at ~2.4 sigma level by combining the KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios with relatively high Th and U abundances, within +-1 sigma uncertainties comparable to the spread of predictions from recent mantle models.Comment: Slight changes and improvements in the text & figures. Results unchanged. To appear in Phys. Rev.
    • …
    corecore